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Abstract

Analytical development of a set of second order elliptic partial

differential equations for the generation of three-dimensional curvi-

linear coordinates between two arbitrary shaped bodies is presented.
The resulting equations have only two independent variables and therefore

require an order of magnitude less working core capacity than when equations

! depending on all three independent variables are considered. The method

also allows, in a straight forward manner, the possibility of coordinate

contraction in the desired regions.
An exact solution of the proposed equations for the case of an inmer

prolate ellipsoid and an outer sphere with doordinate contraction is pre-

-

sented to demonstrate that by using these equations it is possible to

generate three-dimensional coordinates between analytically specified

--—— -

surfaces of simple forms by analytical means.

The fundamental constraining equations which have been adopted for

the generation of coordinates are Azg = 0 and Azn = 0, where A2 is the

surface Beltrami operator of the second order.
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1. Introduction

At present a number of techniques are under active development
for the generation of three-dimensional body-oriented coordinate systems
for use in the numerical solution of the Navier-Stokes equations and
other field equations where the exact specification of the boundary
conditions is of prime importance. Among these efforts two easily dis-
cernable groups can be formed, (1) algebraic methods, and (ii) the
elliptic equations method. 1In the first group the grid points in space
are obtained by some interpolation or blending functions scheme which
depends on the given boundary data. The choice of the interpolation
scheme or of the blending functions is crucial in achieving a desired
order of smoothness and distribution of the grid points in space. This
line of effort has actively been considered by Eiseman [1,2], Smith and
Weigel [3], and Eriksson [4]. In the second group of efforts, a set of
three poisson equations in the curvilinear coordinates are first inverted
and then solved for the Cartesian coordinates under the prescribed values
at the given boundaries. Thus in essence all the methods of the second
group are a straight forward extension of the work of Thompson et al [5]
in two dimensions. Research in this area has been conducted by Mastin
et al [6], Yu [7], Ghia et al [8], and Graves [9].

At this stage of research it is premature to compare the two groups
since neither of them have been fully investigated for their inherent
potentials. However, based on the success of the differential equations
approach in two dimensions, e.g. [5], it is desirable to further investi-
gate the elliptic equations approach for the generation of coordinates.

The elliptic equations approach presented in this paper is different

from the approaches adopted in the previously cited works, i.e., References




e

[P

e~ W -y -
Ry S

- oy ————

-
—

s G . A s e

[6] - [9). The proposed method depends heavily on the formulae of
Gauss and on the concept of principal curvatures of a surface. It has
been shown that a fruitful arrangement of the classical differential-~
geometric results can yield a method which is easily programmable on a
computing machine, and which at any time solves a two-dimensional
partial differential equation of the form used in Ref. [5]. 1In this
paper only the theoretical development of the method along with a tech-
nique to redistribute the coordinate surfaces near the inner boundary
surface has been considered. The developed equations have been solved
for the generation of three-dimensional coordinates between an inner
prolate ellipsoid and an outer spherical surface in an exact analytic

form.
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2. Notation and Collection of Formulas

In what follows, the general coordinates are denoted as x1 (1 =1,

2,3). However when an expression has been expanded out in full and there

is no use for an index notation, we have set
xl.g’xz-n.x3.c.

The derivatives of the position vector r = (x,y,z) are denoted as

2
axt | T axlayd

The covariant components of the metric tensor are
while the contravariant components are given by

i

Thus in three dimensions
g = det(sij)
= 81182833 *+ 2815813823  (853)78); - (8130787, = (81))°83; (2.3)
Writing
Gy = Bp833 = (83)°

- - 2
G, = 8);833 - (813)

J N —
.- PN ——— e . A——— - -~ S e . .
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- 2
3 = 81187 = (83))

4 = 813823 T 817833

[2]
[}

5 = 812823 T 813822
6 - B12813 ~ 813823
we have
g!! =G,/ , 822 = 6G,/g , 833 = G4/8

13

82 =G, /g , g% =6 /g, 823 = Gy/g

The Christoffel symbols based on the metric gij are

£
Iy = & [3k,]

[jkyll = !Jk ~2

o8 og og

21,7540 kL k

2( o+ T - __i_o
ox 9x ax

and repeated lower and upper indices imply summation.

(2.4)

(2.5)

In the sequel we

have also used the surface Christoffel symbols which have been denoted as

Tgy, where the Greek indices range over (1,2) or (3,1) or (2,3).

The coordinate which is held fixed to account for the surface geometry

is denoted by a superscript in parentheses. Thus the unit normal vector

on the surface v = const. is given by




AT wo e
n(v) = (r xr)/|r xr,| (2.7)
~ ~a ~B ~a ~B

where
v=1 :a=2, B=3 (surface x! = const.)
| v=2:a=3, =1 (surface x2 = const.) (2.8)
l v=3 :a=1, 8§ =2 (surface x3 = const.)

v)

The rectangular Cartesian components of n are denoted as

.. 2 - @@, ™ 2O (2.9)

The coefficients of the second fundamental form are denoted by

—————

' S(v), T(v) and U(v) defined as
{
ONERO
f S o L3 (no sum on a)
~v _ )

I
' U(v) = n(v) o r (no sum on B)
N ~ ~BB8
?g where (v,a,8) are in the cyclic permutations of (1,2,3), in this order.
)

The partial derivatives of the second order are expressible in terms

of the first order as

k
Eij = rijsk (2.11)

For a surface on which one of the coordinates is fixed, the Gauss'

equations are

hodos  W——— T T




A = A
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=7 g 4+ s

LT aa~y

rgp = Thery + T2 (2.12)

(v)n(v)

~

= 7Y
Tag = Tggly * U

Where (v,a,B) are in the permutational sequences of (1,2,3) as shown in
(2.8), and the repeated index y implies summation on the two indices of

a surface.

The sum of the principal curvatures of the surface v = const. is, [10],

K 41 = g v 25 1™ 4 g s/ (2.13)

where in writing equation (2.13) for a particular value of v, use must be
made of Eqs. (2.8) and (2.10). We now introduce two second order surface

differential operators by using (2.8), which for v = const. are

) _ -
D z gBBaaa zgaﬁauB + gGQBBB (2.14)
O T U
A2 - /(—;—[a(!{ C (33580. gaBaB)}
v \Y
1
+ 38{_/(;:(8(1(!38 - gaeau)}] (2.15)
\Y)

As is well known, the operator A2 is the Beltrami differential operator

of the second order [10].
The three space Christoffel symbols which have been referred to in

the next section are given below.
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%8y, %y, 8y,

3 1 e 3 X
Iy = 2516 3¢ * %2 3¢ -~ 7o 0!

G
3
2.
7 Fee¥ Ve Y23 (2.16)

03, ol B, o %2

12 3n~ ¥ S T3¢ )

G
3
+ 3 Cpg¥p F VeVt 23 (2.17)

g g g

1 11 22 22
28[6 Q—==- 3t ) + G n ]
G

3
+ =2 + + 2.18
g Fnn¥e ¥ VngVr t ZnnZ) (2.18)
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3. Formulation of the Problem

The principal idea of the method to be presented is to generate a
series of surfaces on each of which a certain a'priori chosen variable
or coordinate 1s kept fixed. Each surface to be generated starts from
a given curve of the inner body and ends on the corresponding curve of
the outer boundary, cf. Fig. 1. A routine, preferably a spline fit,
can then be used to join the successive generated surfaces so as to have
a smooth three-dimensional computational net for solving other physical
field equations.

To illustrate the method, we take v = 3 or x3 = ¢ = constant on each

surface to be generated. Thus o« =1 and B = 2, viz., o and B respectively

1

correspond to the coordinates x £ and x2 = n. For the sake of brevity
of notation we will not use the superscript (3) unless it becomes neces-

sary. Thus from (2.10)

S=g.!EE’T=9.EEn’U=B.Enn (3.1)
where
n = iX + jY + kZ (3.2)
Equations (2.12) are
.. =T/ r + Sn (3.3)
~EE 11=y -
r, =T r +Tn (3.4)
~&n 12~y ~
r =T'.r +Un (3.5)
~nn 22~y -
9
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‘ From (2.14) and (2.15) the operators D( ) and A

32 2 32

i _ d
| D = g5, ) - 2812 3630 T 811 anZ (3.6)
{

12,1 2
2 ,r—J_E{,rgﬁszz TR )

3.7
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We now multiply equations (3.3) - (3.5) respectively by 8y -2g12,

811 adding and using equations (2.13) and (2.15) to have
Dr + G3(5€A25 + gnAzn) = G3g(k1 + k2) (3.8)
i
where
r 8,€ = (28,1}, - g,, T} - g 17})
2 Gy 12712 22°11 11°22

o

=1 2 2 _ 2
8yn c3(2312T12 82711 ~ 811722’ (3.9)

- - 2
G3 = 818, ~ (8;))

';

'
!
)

;
:
)
|
II‘
f
of
1
%
"
1

To obtain an expression for k1 + k2 consider equation (2.11) and

utilize the property that n is orthogonal to Eg and gn, so that

. = 13
0t Ty r11(9

-]

- 13
Ein r12(g

10
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* = 3 L]
Eon = T22(2 " 1)

(3.10)

where all the derivatives with respect to ¢ are evaluated at g =
constant. Multiplying Eq. (3.8) scalarly by n and using (3.10), we

get

- [ 3 - 3 3
Gylky +kp) = (2 = £)(813T27 - 28571, + 83571y) (3.11)

We_now propose the following deterministic problem: Let £ and n be

the surface coordinates on the surface [ = constant, subject to the

constraints

AZE = 0
(3.12) ‘
Azn =0

Then the Cartesian coordinates x,y,z of the surface satisfy the differential

equations

Dr = G(k; + ky)n (3.13)

The three scalar differential equations for the generation of the Cartesian 4

coordinates are then

gzzxEE - 2812x€n + guxnn = XR (3.14)
822V¢e ~ 2812Yeq * 811V, " YR (3.15)
ZR (3.16)

822%¢g ~ 2812%n * B11%ny ”

where

11




e re——— : '-!w--r'-u--myn-u--wn------?u------y‘,

- 3 . 3 3
R (Xx; + Yy; + zzc)(gnr22 23121'12 + 322r11) (3.17)

and

X = (yzzn - ynzg)//E;

- xgzn)/@ (3.18) |

Y= (x2z

ng

Z = (xgyn - xnye)//E;

Equations (3.14) (3.16) form a quasilinear system of partial
differential equations in which the components of EC are assumed to be
known. Since the values of x,y,z are known on the basic inner and outer

boundaries (denoted at B and » respectively in Fig. 1), a suitable way

of prescribing I can be to take

‘ £ = £y + (), (3.19)

where fl(n) and fz(n) are suitable weights having the properties

—— .

£,(n) =0, £,(n) =1

For exposing the essential nonlinear terms in the factor R we refer

to Eqs. (2.16) - (2.18) in which the EC terms have been collected

separately.

Referring to Figure 2, we now solve Eqs. (3.14) - (3.16) for each

¢z = const., on a rectangular plane by prescribing the values of x, y and

z on the lower side (Cl) and upper side (Cz) which represent the curves

12
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on B and » respectively. The sides c3 and C, are the cut lines on which
periodic boundary conditions are to be imposed. The preceding analysis

thus completes the formulation of the problem.
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4. Coordinate Transformation (Contraction)

Por the purpose of generating coordinates between the space of the
inner and outer boundary which can be distributed in a desired manner,

we consider a coordinate transformation from £ + x and n + 0. Let

€= E(X) + &

(4.1)
n = n(o) + s

then

E=g at x=x, , E(xo) -AO

(4.2)

nengato=a,, n(on) =0

B
Writing

» 8(0) 'd—n

d
A(x) = 35 do

X

and denoting the transformed metric tensor as Eij’ we have

e 12 T a2 2 2
811 811/A ' 81, x + Yy + z \

812 " 312/6A ' 8)5 " xxxo + Yo + x5,

- 2 T a2 2 2
822 822/6 » 822 % %5 + Yo + za >

=G /8222 . C. =g & .. - (o )2
G3 = G3/0%0% 4 Gy = 81,855 = (8)7) .3

X=sX,Y=Y,Z=2Z }

14
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e R

k1 + kz - kl + kz

R = R/6222
Further noting that
R,
- XX xz
Tee (rx )/
Ten rxo/ex
r 6
- - 29 9y/92
Enn (!uo o )/e

Using (4.3) and (4.4) in Eqs. (3.14) - (3.16), we have
B22%,y ~ 2812%,5 * By1%go = PX, + Qx, + XR

8227,y ~ 2'12)')(« +8)1Y5 " Pyx + Qy, + YR

822%,, " 2812%,6 * 811%

where

=Pz + 0z, +ZR

(4.4)

(4.5)

(4.6)

4.7

(4.8)

Thus, by choosing A and 6 arbitrarily we can redistribute the coordinates

in the desired manner. An sexample of this choice is given in the next

section.
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5. An Analytical Example of Coordinate Generation

In this section we shall consider the problem of coordinate genera-
tion between a prolate ellipsoid and a sphere with coordinate contraction
near the inner surface. This problem yields an exact solution of the
equations (4.5) - (4.7).

Let n = g and n = n_ be the inner prolate ellipsoid and the outer
sphere respectively. The coordinates which vary on these two surfaces
are £ and . We now envisage a net of lines £ = const. and { = const.

on these two surfaces. A curve C1 on the inner surface designated as

;= Co is

X = coshnncosco
y = sinhnnsincocosﬁ (5.1)
z = sinhnBsin;osinE

Similarly, the curve C2 corresponding to § = Co on the outer surface is

nﬂ
X = e cosi \
n
y=e 'ain;ocoaz ‘> (5.2)
nn
z=e aincoeinc /

Based on the forms of the functions x,y,z in (5.1) and (5.2), we

asgsume the following forms of x,y,z for the surface § = co:

16
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X = f(c)cosc°

ys= 0(o)aiu;°coa£ (5.3)

hpa e

z = o(a)aincosinz

- The boundary conditions for f and ¢ are

f(oB) = coshnB

nﬂ
f(ow) = e
" (5.4)
' ( ¢(op) = sinhng
|
! n,
{ #(c,) = e

Calculating the various derivatives, metric coefficients, and all
other data needed in the equations (4.5) - (4.7), we get on substitution

an equation which has sin?; and cos?y . Equating to zero the coefficients
o o

' of ainzco and coszco, we obtain
A
]
f"--e— L
L | AT Y- (5.5)
oo
! A
, frated (5.6)
!
: {

vhere a prime denotes differentiation with respect to ¢. On direct inte-

oy

- -

gration of Eqs. (5.5) and (5.6) under the boundary conditions (5.4),

-
-~

we get




wvhere

f(o) = A‘Bn(c) +C

#(c) = DB

n
(e ® - coshnn)ainhnB

nﬂ
e - sinhnB

A=

n
=S ® ]1/(“. -n
sinhnB

)

B=1I1n B

n

e “(coshn, - sinhnn)

C=
n

o«
e - sinhnB

D= sinhnB

As an application we may take [11]

E(x) = ax

n(c) = b(ao - a‘)x°

wvhere a and b are constants. Since at Ny»

e

n(o,) = n, - Ny

(ng = nd(o-o0p) (-
- B BA‘(O o)

n(o) = (E:‘- o')

18
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(5.7)

(5.8)

(5.9a)

(5.9b)

(5.9¢)

(5.9d)

bt




——

s

By taking a value of K slightly greater than one (K = 1.05 or 1.1), we
can have sufficient contraction of coordinates near the inner surface.
For the chosen problem, since the dependence on [ is simple, we

find that the coordinates between a prolate ellipsoid and a sphere are

Bn(o)

x = [Ae + Clcosg

Bn(o)

y = De singcosg

Bn(o)

z = De singsing

where A, B, C, and D are given in equation (5.9).

19
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6. Conclusions

A new method for the generation of three-dimensional coordinates
between two arbitrary shaped bodies has been presented. The method is
based on some simple differential-geometric concepts such as the equations
of Gauss and the expressions for the principal curvatures of a surface.
The simplicity of the method lies in solving, at one time, only three
partial differential equations of the two-dimensional type. This aspect
is bound to reduce the working core requirements for a given problem on
a computing machine. Finally the method allows, in a very direct fashion,
the possibility of coordinate redistribution in the desired regions (cf.
Eqs. (4.5) - (4.7)).

An analytic solution of the proposed equations for the case of an
inner prolate ellipsoid and an outer sphere has been presented. This
example shows that one can generate coordinates between two analytically
specified surfaces of simple forms by exact solutions of the proposed
equations.

In chis paper the fundamental equations which form a set of con-

straints for the generation of coordinates in the surface are
AZE =0

Azn'o»

where Az is the surface Beltrami operator of the second order. It must
be noted that A2 is neither a Laplace operator in the Cartesian plane
(x,y), nor in the Cartesian space (x,y,z). However, in the case of a

Cartesian plane (x,y), when there is no dependence on z, A2 reduces to

the Laplace operator v2,
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Figure 1: (a) Topoloty of the given surfaces. Inner n = n_, outer
n = n_, current variables £, . (b) Surface to be generateg for
each [ = const., current variables £, n.
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Figure 1(b) opened in a rectangular plane by imagining







